Preuves Interactives

et Applications

Burkhart Wolff
http://www.lri.fr/~wolff/teach-material/2020-2021/M2-CSMR

Université Paris-Saclay

Foundations: λ-calculus

Motivation: Why ITP* ?
 *)Interactive Theorem Proving

- Enormous Versatility of Proof Problems :
- Mathematics : 4 color theorem, Kepler conjecture, Feit-Thompson conjecture. . .
- Theoretical Informatics :
- Formal proofs of algorithms
- Program Language Semantics,
- Soundness of Type-Systems
- Engineering (Practical Informatics):
- Back-end for other provers (certifying proof traces),
- Discharging Proof Obligations in Program Verification
- SEL4 (Isabelle/HOL, NICTA), secured micro-kernel for OS
- CompCert (Coq, Inria), optimising C compiler
- ... much stuff in Phd-thesis and the literature ...

Plan of this Course: " λ-calculus"

- Untyped λ - Terms
- Conversions and Reductions
- The typed λ-calculus
- Properties
- Encoding Logics in the typed λ-calculus
- What is "natural deduction"?

Foundations:

Untyped λ-Terms

Background: The λ-calculus

- Developed in the 30ies by Alonzo Church (and his students Kleene and Rosser)
- ... to develop a representation of Whitehead's and Russel's "Principia Mathematica"

- ... was early on detected as

Turing-complete and actually a "functional computation model" (Turing)

The Terms of the (pure) λ-calculus

- λ-terms T are built (inductively) over:
- V, a set of "variable symbols"
- $\lambda \mathrm{V}$. T, a term construction called " λ-abstraction",
- T T, a term construction called "application"

A version adding a set of constant symbols is called "the applied λ-calculus"

The λ-calculus: Notation

This produces expressions like:

$$
(\lambda x . \lambda y .(\lambda z .(\lambda x . z x)(\lambda y . z y))(x y))
$$

parenthesis can be dropped:
$((f x) y) \quad$ is written just $f x y$
$f(x) \quad$ is written just $f x$.

The λ-calculus: Binding

The most important aspect of "variables" are that they "stand for something", i.e. they can be "substituted" by something.

A key-motivation for the λ-calculus is that key-ideas of binding and scoping of variables (as occurring mathematics and programming languages) should be treated correctly.
λ-abstractions build a scope: in $\lambda x . x x$, x appears "bound". If a variable occurrence in not bound, is called "free".

The λ-calculus : Binding

Example:
$(\lambda x . \lambda y \cdot(\lambda z \cdot(\lambda x . z a)(\lambda y . z y))(x y))$

The free variables can be computed recursively:

- free $(x)=\{x\}$ for any $x \in$
- free(T T') $=$ free((T) u free($\left.T^{\prime}\right)$
- free $(\lambda x . T)=$ free $(T) \backslash\{x\}$

Substitution and Conversions

Bound variables can be arbitrarily renamed, provided that this does not "capture" a free variable (make it bound).
This is reflected by the notion of

$$
\alpha \text {-conversion (written } \leftrightarrow_{\alpha} \text {). }
$$

Example:

$$
\begin{aligned}
& (\lambda x \cdot \lambda y \cdot(\lambda z \cdot(\lambda x . z a)(\lambda y \cdot z y))(x y)) \leftrightarrow_{\alpha} \\
& (\lambda x \cdot \lambda y \cdot(\lambda z \cdot(\lambda y \cdot z a)(\lambda y \cdot z y))(x \text { y })) \\
& \text { but not: } \\
& (\lambda x \cdot \lambda y \cdot(\lambda z \cdot(\lambda a . z \text { a) }(\lambda y . z y))(x y))
\end{aligned}
$$

Substitution and Conversions

Free-ness of variables and \leftrightarrow_{α} together give a notion of capture-free substitution.

- $x[x:=r]=r$
- $y[x:=r]=y$
- $(\mathrm{t} \mathrm{s})[\mathrm{x}:=\mathrm{r}]=(\mathrm{t}[\mathrm{x}:=\mathrm{r}])(\mathrm{s}[\mathrm{x}:=\mathrm{r}])$
- $\quad(\lambda x . t)[x:=r]=\lambda x . t$
- $\quad(\lambda y . t)[x:=r]=\lambda y .(t[x:=r]) \quad$ if $x \neq y$ and y is not in the free variables of r.
- The variable y is said to be "fresh" for r.

Substitution and Conversions

Example:

- $(\lambda x \cdot x)[y:=y]=\lambda x \cdot(x[y:=y])=\lambda x \cdot x$
- $((\lambda x \cdot y) x)[x:=y]=((\lambda x \cdot y)[x:=y])(x[x:=y])=(\lambda x \cdot y)(y)$

Counterexample (ignoring freshness condition) :
($\lambda \mathrm{x} . \mathrm{y})[\mathrm{y}:=\mathrm{x}]=\lambda \mathrm{x} .(\mathrm{y}[\mathrm{y}:=\mathrm{x}])=\lambda \mathrm{x} . \mathrm{x}$
Corrected Example:
$(\lambda x . y)[y:=x]=(\lambda z . y)[y:=x]=(\lambda z . x)$
so we would convert a constant function into an identity ...

Substitution and Conversions

The "Motor" of the λ-calculus: the β-conversion (written \leftrightarrow_{β}) or its onedirectional version, the β-reduction (written \rightarrow_{β}).
It captures the notion of applying a function by substitution of its arguments:

- $(\lambda \mathrm{x} . \mathrm{t}) \mathrm{E} \leftrightarrow_{\beta} \mathrm{t}[\mathrm{x}:=\mathrm{E}]$
- $(\lambda x . t) E \rightarrow{ }_{\beta} \mathrm{t}[\mathrm{x}:=\mathrm{E}]$

Substitution and Conversions

The η-conversion (written \leftrightarrow_{η}) or its one-directional version, the η-reduction (written \rightarrow_{η}) captures the notion of extensionality on functions:
$(\lambda x . f x) \leftrightarrow_{\eta} f \quad$ where x does not occur free in f

All conversions/reductions are congruences, i.e. can be applied to any sub-term.

Substitution and Conversions

Example:

$\lambda g .\left(\lambda x . g\left(\begin{array}{ll}x\end{array}\right)\right)\left(\lambda x . g\left(\begin{array}{l}x\end{array}\right) \quad\right.$ (which we will abbreviate Y)
Now consider:

```
    Y f
\equiv (\lambdah.(\lambdax.h (x x)) (\lambdax.h (x x))) f
-> _
-> _ f ((\lambdax.f (x x)) (\lambdax.f (x x)))
\equiv f(# f)
```

A combinator with this property $\mathbf{Y} f=f(\mathbf{Y} f)$ is called fixpoint combinator.

Computations

Example (Church Numerals):

```
\(0 \equiv \lambda f . \lambda x . x\)
\(1 \equiv \lambda f . \lambda x . f x\)
\(2 \equiv \lambda f . \lambda x . f(f x)\)
\(3 \equiv \lambda f . \lambda x . f(f(f x))\)
\(\operatorname{SUCC} \equiv \lambda n \cdot \lambda f . \lambda x . f(n f x)\)
PLUS \(\equiv \lambda m \cdot \lambda n . \lambda f . \lambda x . m f(n f x)\)
```

Consider:

$$
\text { PLUS } 23 \rightarrow_{\beta}^{*} \quad 5
$$

Substitution and Conversions

Example (Boolean Logics):

```
TRUE \equiv \lambdax. 
FALSE \equiv \lambdax.\lambday.y
AND \equiv \lambdap.\lambdaq.p q p
OR \equiv \lambdap.\lambdaq.p pq
NOT \equiv \lambdap.p FALSE TRUE
IFTHENELSE \equiv \lambdap.\lambdaa.\lambdab. p a b
```

(Note that FALSE is equivalent to the Church numeral zero defined before)

Consider:

Substitution and Conversions

Example (Recursive Function):

```
FAC \equiv \lambdafac. \lambdan. IFTHENELSE (ISZERO n)
    (1)
    (MULT n (fac(PRED n)))
Y\equiv\lambdaf. (\lambdax. f(x x) ) (\lambdax. f(x x))
```

Consider:

$$
\left(\mathrm{Y} \text { FAC) } 4 \rightarrow_{\beta}^{*} 24\right.
$$

The untyped λ-calculus

Theoretical Properties (Pure/Applied)

- it is "a universal language" (i.e. it has the same computational power than, say, Turing Machines
- there may be calculations that "diverge" (loop)
- it is Church-Rosser:

$$
\begin{aligned}
& \text { (for * be } \beta \text { reductions, } \\
& \alpha_{\eta} \text {-conversions) }
\end{aligned}
$$

- the equality on λ-terms is undecidable.
- the difference between "Pure" and "Applied" irrelevant

Foundations:

Typed λ-Terms

The typed λ-calculus

Motivation:

- a term - language for representing maths (with quantifiers, integrals, limits and stuff thus: variables with binding.) in a logic [seminal paper by Church in 1940]
- no divergence admissible [what would a "divergent term" mean in a logic ?]
- equality on terms decidable
- turned out to be easy to implement.

The typed λ-calculus

Idea:

- we use an applied λ-calculus (and constant symbols will be subtly different from variables in the typed λ)
- we introduce the syntactic category of types
- we require all "legal" terms to be typed, i.e. an association of a term to a type according to typing rules must be possible.
- Typed terms were defined inductively.

The typed λ-calculus

(Applied) λ-terms T are built (inductively) over:

- V, a set of "variable symbols"
-C, a set of "constant symbols"
- $\lambda \mathrm{V}$. T, a term construction called " λ-abstraction",
-T T, a term construction called "application"

The typed λ-calculus

Types (1):

- We assume a set of type constructors χ with symbols like bool, nat, int, _list, _set, _ \Rightarrow, \ldots
- We assume a set of type variables TV for $\alpha, \beta, \gamma \ldots$
- The set of types τ is inductively defined:

$$
\tau::=\operatorname{TV} \mid \chi\left(\tau_{1}, \ldots, \tau_{n}\right)
$$

The typed λ-calculus

Types (2):

- We assume a set of type constructors χ with symbols like bool, nat, int, _list, _set, _ \Rightarrow _, ...
- For type constructors (and constant symbols), we will allow infix/circumfix notation:
we will write:

nat	for	nat()
bool	for	bool()
nat list	for	(list_)(nat)
bool \Rightarrow nat	for	$\left(__\right)($bool, nat $)$

The typed λ-calculus

Types (3):

- We assume constant environment which assigns each constant symbol a type:

$$
\Sigma:: \mathrm{C} \mapsto \tau
$$

- We assume a variable-environment which assigns to each variable symbol a type:

$$
\Gamma:: \mathrm{V} \mapsto \tau
$$

$$
\text { (we write } \Gamma=\left\{a \mapsto \tau_{1}, b \mapsto \tau_{2}, c \mapsto \tau_{3} \ldots\right\} \text {) }
$$

The typed λ-calculus

Types (4):

- A type judgement stating that a term t has type τ in environments Σ and Γ :

$$
\Sigma, \Gamma \vdash \mathfrak{t}:: \tau
$$

... and a set of inductive type inference rules establishing type judgements.

The typed λ-calculus

- Type Inferences:

$$
\begin{gathered}
\overline{\Sigma, \Gamma \vdash c_{i}:: \theta\left(\Sigma c_{i}\right) \quad \overline{\Sigma, \Gamma \vdash x_{i}:: \Gamma x_{i}}} \\
\frac{\Sigma, \Gamma \vdash E:: \tau \Rightarrow \tau^{\prime} \quad \Sigma, \Gamma \vdash E^{\prime}:: \tau}{\Sigma, \Gamma \vdash E E^{\prime}:: \tau^{\prime}} \\
\frac{\Sigma,\left\{x_{i} \mapsto \tau\right\} \uplus \Gamma \vdash E:: \tau^{\prime}}{\Sigma, \Gamma \vdash \lambda x_{i} \cdot E:: \tau \Rightarrow \tau^{\prime}}
\end{gathered}
$$

The typed λ-calculus

- Note that constant symbols where treated slightly different than variable symbols:
- constant symbols may be instantiated (the type variables may be substituted via θ)
- a constant symbol may therefore have different types in a term.

Typed λ-calculus

- We assume

$$
\begin{aligned}
\Sigma= & \{0 \mapsto \text { nat, } 1 \mapsto \text { nat, } 2 \mapsto \text { nat, } 3 \mapsto \text { nat }, \\
& \text { Suc } _\mapsto \text { nat } \Rightarrow \text { nat, } _^{+} \mapsto \text { nat } \Rightarrow \text { nat } \Rightarrow \text { nat }, \\
& \left.={ }_{-} \mapsto \alpha \Rightarrow \alpha \Rightarrow \text { bool, True } \mapsto \text { bool, False } \mapsto \text { bool }\right\}
\end{aligned}
$$

Typed λ-calculus

- Example: does $\lambda x \cdot x+3$ have a type, and which one?

$\overline{\Sigma,\{x \mapsto n a t\} \vdash\left(++_{+}\right):: n a t \Rightarrow n a t \Rightarrow n a t} \quad \overline{\Sigma,\{x \mapsto n a t\} \vdash x:: ~ n a t}$	
$\Sigma,\{x \mapsto n a t\} \vdash(-+)^{\prime}(x)::$ nat \Rightarrow nat	$\Sigma,\{x \mapsto n a t\} \vdash 3:: ~ n a t$
$\Sigma,\{x \mapsto$ nat $\} \uplus\{ \} \vdash x+3::$ nat	
$\Sigma,\{ \} \vdash \lambda x . x+3:: n a t \Rightarrow n a t$	

Revisions: Typed λ-calculus

- Examples:

Are there variable environments ρ such that the following terms are typable in Σ :
(note the infix notation: we write $0+x$ for "_+_" 0 x")

- $\left(_+0\right)=($ Suc $x)$
- $((x+y)=(y+x))=$ False
- f(_+_0) = ($\lambda \mathrm{c} . \mathrm{g} \mathrm{c}) \mathrm{x}$
- _+_z (_+_(Suc 0)) $=(0+\mathrm{f}$ False $)$
- $\mathrm{a}+\mathrm{b}=($ True $=\mathrm{c})$

Revisions: β-reduction

- Assume that we want to find typed solutions for ?X, ?Y, ?Z such that the following terms become equivalent modulo α-conversion and β-reduction:

$$
\begin{array}{lll}
- & ? \mathrm{Xa} & =?=\mathrm{a}+? \mathrm{Y} \\
- & (\lambda \mathrm{c} . \mathrm{g} \mathrm{c}) & =?=(\lambda \mathrm{x} . ? \mathrm{Y} \mathrm{x}) \\
- & (\lambda \mathrm{c} . ? \mathrm{X} \mathrm{c}) \mathrm{a} & =?=? \mathrm{Y} \\
- & \lambda \mathrm{a} .(\lambda \mathrm{c} . \mathrm{X} \mathrm{c}) \mathrm{a} & =?=(\lambda \mathrm{x} . ? \mathrm{Y})
\end{array}
$$

- Note: Variables like ? X, ? Y, ? Z are called schematic variables; they play a major role in Isabelles RuleInstantiation Mechanism
- Are solutions for schematic variables always unique ?

The typed λ-calculus

Theoretical Properties (without proof)

- the congruence

$$
\mathrm{t} \leftrightarrow_{\alpha \beta \eta} \mathrm{t}^{\prime}
$$

is decidable (reduce to β-normalform, expand to
η-longform, rename vars via α in some canonical order)

- Systems like Coq, Isabelle, HOL4 can use (some form of) typed λ-calculi as universal termrepresentation with binding operators such as \forall, \exists, sums, integrals, ...

The typed λ-calculus

Theoretical Properties (without proof)

- The type inference problem is decidable, i.e. for

$$
\Sigma, ? \vdash \mathrm{t}:: ? ?
$$

there is an algorithm that finds solutions for ? and ?? if existing.

- the difference between "Pure" and "Applied" is relevant for typing
- $\lambda \mathrm{f} .(\mathrm{x} . \mathrm{f}(\mathrm{x} x))(\lambda \mathrm{x} . \mathrm{f}(\mathrm{x} x))$ is untypable
- Beta-reduction is terminating, i.e. there is always an irreducible t' for any t such that:

$$
\mathrm{t} \rightarrow_{\beta}{ }^{*} \mathrm{t}^{\prime}
$$

Application:

Encoding a Simple Logic in typed λ-Terms

Pure in Typed λ-calculus

- We assume for a minimal logic:

$$
\begin{aligned}
& \Sigma_{\text {Pure }}=\left\{{ }_{-} \Longrightarrow_{-} \mapsto \text { prop } \Rightarrow \text { prop } \Rightarrow\right. \text { prop, } \\
& -\equiv _\quad \mapsto \alpha \Rightarrow \alpha \Rightarrow \text { prop, } \\
& \left.\Lambda_{--} \quad \mapsto(\alpha \Rightarrow \text { prop }) \Rightarrow \text { prop }\right\}
\end{aligned}
$$

where we will equivalently write
$\wedge x . P$ for $\wedge_{-} .(\lambda x . P) . \quad$ (Quantifier notation)

HOL in Typed λ-calculus

- We assume for Higher-Order Logic:

$$
\begin{aligned}
& \Sigma_{\text {HOL }}=\Sigma_{\text {Pure }} \uplus \\
& \text { \{ Trueprop } \mapsto \text { bool } \Rightarrow \text { prop, } \\
& \text { True } \mapsto \text { bool, False } \mapsto \text { bool, } \\
& \wedge_{_} \mapsto \mathrm{bool} \Rightarrow \mathrm{bool} \Rightarrow \mathrm{bool}, \mathrm{~V}_{_} \mapsto \mathrm{bool} \Rightarrow \mathrm{bool} \Rightarrow \mathrm{bool} \text {, } \\
& { }_{-} \longrightarrow _\mapsto \mathrm{bool} \Rightarrow \mathrm{bool} \Rightarrow \mathrm{bool}, \neg_{-} \mapsto \mathrm{bool} \Rightarrow \mathrm{bool}, \\
& \text { _ = _ } \quad \rightarrow \alpha \Rightarrow \alpha \Rightarrow \mathrm{bool}, \\
& \forall_{-} . \quad \mapsto(\alpha \Rightarrow \text { bool }) \Rightarrow \text { bool, } \\
& \left.\exists_{-} \quad \mapsto(\alpha \Rightarrow \text { bool }) \Rightarrow \text { bool }\right\}
\end{aligned}
$$

Outlook: representing Rules

- An Inference System for the equality operator (or "HO Equational Logic") looks like this:
$\frac{(s=t) \text { prop }}{(s=s) \text { prop }} \frac{(r=s) \text { prop } \quad(s=t) \text { prop }}{(t=s) \text { prop }}$
$\frac{(r=t) \text { prop }}{(s(x)=t(x)) \text { prop }}$ where x is fresh $\quad \frac{(s=t) \text { prop } \quad(P(s)) \text { prop }}{(P(t)) \text { prop }}$
(Prop is Trueprop and the bar corresponds to $\mathrm{A} \Longrightarrow \mathrm{B}$).

Natural Deduction

- With a nicer pretty-printing this looks like this:
$\overline{x=x} \quad \frac{s=t}{t=s} \quad \frac{r=s \quad s=t}{r=t}$
$\frac{\bigwedge x . s x=t x}{s=t}$

$$
\frac{s=t \quad P s}{P t}
$$

(equality on functions as above ("extensional equality") is an HO principle, and it is a principle in a "classical" HOL).

Conclusion

- Typed λ-calculus is a rich term language for the representation of logics, logical rules, and logical derivations (proofs)
- On the basis of typed λ-calculus,
- Higher-order logic (HOL) is fairly easy to represent
- The differences to first-order logic (FOL) are actually tiny.

