Preuves Interactives et Applications

Burkhart Wolff

http://www.lri.fr/~wolff/teach-material/2020-2021/M2-CSMR

Université Paris-Saclay

Foundations: λ -calculus

1

Motivation: Why ITP* ?

*)Interactive Theorem Proving

- Enormous Versatility of Proof Problems :
 - Mathematics : 4 color theorem, Kepler conjecture, Feit-Thompson conjecture. . .
 - Theoretical Informatics :
 - Formal proofs of algorithms
 - Program Language Semantics,
 - Soundness of Type-Systems
 - Engineering (Practical Informatics):
 - Back-end for other provers (certifying proof traces),
 - Discharging Proof Obligations in Program Verification
 - SEL4 (Isabelle/HOL, NICTA), secured micro-kernel for OS
 - CompCert (Coq, Inria), optimising C compiler
 - ... much stuff in Phd-thesis and the literature ...

Plan of this Course: " λ -calculus"

- Untyped λ Terms
- Conversions and Reductions
- The typed $\lambda\text{-calculus}$
- Properties
- Encoding Logics in the typed $\lambda\text{-calculus}$
- What is "natural deduction"?

Foundations: Untyped λ -Terms

Background: The $\lambda\text{-calculus}$

- Developed in the 30ies by Alonzo Church (and his students Kleene and Rosser)
- ... to develop a representation of Whitehead's and Russel's "Principia Mathematica"

 ... was early on detected as Turing-complete and actually a "functional computation model" (Turing)

1/4/21

The Terms of the (pure) λ -calculus

- λ -terms T are built (inductively) over:
 - V, a set of "variable symbols"
 - $\lambda V.$ T, a term construction called " $\lambda-abstraction ''$,
 - TT, a term construction called "application"
- A version adding a set of constant symbols is called "the applied $\lambda-\mbox{calculus}$ "

The $\lambda\text{-calculus:}$ Notation

This produces expressions like:

$$(\lambda x.\lambda y.(\lambda z.(\lambda x.z x) (\lambda y.z y)) (x y))$$

parenthesis can be dropped:

((f x) y) is written just f x yf(x) is written just f x.

The λ -calculus: Binding

The most important aspect of "variables" are that they "stand for something", i.e. they can be "substituted" by something.

A key-motivation for the λ -calculus is that key-ideas of binding and scoping of variables (as occurring mathematics and programming languages) should be treated correctly.

 λ -abstractions build a scope: in $\lambda x. x x, x$ appears "bound". If a variable occurrence in not bound, is called "free".

The λ-calculus : Binding Example: $(\lambda \dot{x}.\lambda \dot{y}.(\lambda \dot{z}.(\lambda x.z a) (\lambda \dot{y}.z y))(\dot{x} y))$

The free variables can be computed recursively:

- free(x) = {x} for any $x \in$
- free(T T') = free(T) \cup free(T')
- free(λx . T) = free(T) \ {x}

Bound variables can be arbitrarily renamed, provided that this does not "capture" a free variable (make it bound).

This is reflected by the notion of

 α -conversion (written \leftrightarrow_{α}).

Example:

$$(\lambda x.\lambda y.(\lambda z.(\lambda x.z a) (\lambda y.z y)) (x y)) ↔_{\alpha}$$

 $(\lambda x.\lambda y.(\lambda z.(\lambda y.z a) (\lambda y.z y)) (x y))$
but not:
 $(\lambda x. \lambda y. (\lambda z. (\lambda a. z a) (\lambda y. z y)) (x y))$

Free-ness of variables and \leftrightarrow_{α} together give a notion of capture-free substitution.

- x[x:=r] = r
- y[x:=r] = y
- (t s)[x:=r] = (t[x:=r])(s[x:=r])
- $(\lambda x. t)[x:=r] = \lambda x.t$
- $(\lambda y. t)[x:=r] = \lambda y.(t[x:=r])$ if $x \neq y$ and y is not in the free variables of r.
- The variable y is said to be "fresh" for r.

Example:

- $(\lambda x.x)[y:=y] = \lambda x.(x[y:=y]) = \lambda x.x$
- $((\lambda x.y)x)[x:=y] = ((\lambda x.y)[x:=y])(x[x:=y]) = (\lambda x.y)(y)$

Counterexample (ignoring freshness condition) : $(\lambda x. y)[y:=x] = \lambda x.(y[y:=x]) = \lambda x. x$ Corrected Example: $(\lambda x. y)[y:=x] = (\lambda z. y)[y:=x] = (\lambda z. x)$

so we would convert a constant function into an identity ...

- The "Motor" of the λ -calculus: the
- β -conversion (written \leftrightarrow_{β}) or its one-

directional version, the β -reduction

(written \rightarrow_{β}).

It captures the notion of applying a function by substitution of its arguments:

•
$$(\lambda x.t) \to_{\beta} t[x:=E]$$

• $(\lambda x.t) \to_{\beta} t[x:=E]$

The η -conversion (written \leftrightarrow_{η}) or its one-directional version, the η -reduction (written \rightarrow_{η}) captures the notion of extensionality on functions:

$$(\lambda x.f \ x) \ \leftrightarrow_\eta f \qquad \text{where } x \ \text{does not occur free in } f$$

All conversions/reductions are congruences, i.e. can be applied to any sub-term.

Example:

 $\lambda g. (\lambda x.g (x x)) (\lambda x.g (x x))$

(which we will abbreviate Y)

Now consider:

```
 \begin{array}{l} & \mathbf{Y} \ f \\ \equiv & (\lambda h. (\lambda x. h \ (x \ x)) \ (\lambda x. h \ (x \ x))) \ f \\ & \longrightarrow_{\beta} & (\lambda x. f \ (x \ x)) \ (\lambda x. f \ (x \ x)) \\ & \longrightarrow_{\beta} & f \ ((\lambda x. f \ (x \ x)) \ (\lambda x. f \ (x \ x))) \\ & \equiv & f \ (\mathbf{Y} \ f) \end{array}
```

A combinator with this property $\mathbf{Y} f = f (\mathbf{Y} f)$ is called fixpoint combinator.

Computations

Example (Church Numerals):

 $0 \equiv \lambda f. \lambda x. x$ $1 \equiv \lambda f. \lambda x. f x$ $2 \equiv \lambda f. \lambda x. f (f x)$ $3 \equiv \lambda f. \lambda x. f (f (f x))$... SUCC = $\lambda n. \lambda f. \lambda x. f (n f x)$

PLUS = $\lambda m. \lambda n. \lambda f. \lambda x. m f (n f x)$

Consider:

PLUS 2 3
$$\rightarrow_{\beta}^{*}$$
 5

۰

Example (Boolean Logics):

TRUE $\equiv \lambda x. \lambda y. x$ FALSE $\equiv \lambda x. \lambda y. y$ (Note that FALSE is equivalent to the Church numeral zero defined before) AND $\equiv \lambda p. \lambda q. p q p$ OR $\equiv \lambda p. \lambda q. p p q$ NOT $\equiv \lambda p. p$ FALSE TRUE IFTHENELSE $\equiv \lambda p. \lambda a. \lambda b. p a b$

Consider:

AND TRUE FALSE $\longrightarrow_{\beta}^{*}$ FALSE

Example (Recursive Function):

FAC = $\lambda fac. \lambda n.$ IFTHENELSE (ISZERO n) (1) (MULT n (fac(PRED n)))

 $Y \equiv \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))$

Consider:

(Y FAC) 4
$$\rightarrow_{\beta}^{*}$$
 24

The untyped λ -calculus

Theoretical Properties (Pure/Applied)

- it is "a universal language" (i.e. it has the same computational power than, say, Turing Machines
- there may be calculations that "diverge" (loop)
- it is Church-Rosser:

(for * be β reductions, $\alpha\eta$ -conversions)

- the equality on $\lambda\text{-}terms$ is undecidable.
- the difference between "Pure" and "Applied" irrelevant

Foundations: Typed λ -Terms

Motivation:

- a term language for representing maths (with quantifiers, integrals, limits and stuff thus: variables with binding.) in a logic [seminal paper by Church in 1940]
- no divergence admissible
 [what would a "divergent term" mean in a logic ?]
- equality on terms decidable
- turned out to be easy to implement.

Idea:

- we use an applied λ-calculus

 (and constant symbols will be subtly
 different from variables in the typed λ)
- we introduce the syntactic category of types
- we require all "legal" terms to be typed,
 i.e. an association of a term to a type
 according to typing rules must be possible.
- Typed terms were defined inductively.

```
(Applied) \lambda-terms T are built (inductively) over:
```

- V, a set of "variable symbols"
- C, a set of "constant symbols"
- $\lambda V.$ T, a term construction called " $\lambda-abstraction "$,
- TT, a term construction called "application"

The typed λ -calculus

Types (1):

- We assume a set of type constructors χ with symbols like bool, nat, int, _list, _set, _ \Rightarrow _, ...
- We assume a set of type variables TV for $\alpha, \beta, \gamma...$
- The set of types τ is inductively defined:

$$τ ::= TV | χ(τ_1,..., τ_n)$$

The typed λ -calculus

Types (2):

- We assume a set of type constructors χ with symbols like bool, nat, int, _list, _set, _ \Rightarrow _, ...
- For type constructors (and constant symbols), we will allow infix/circumfix notation:

we will wr	rite:	
nat	for	nat()
bool	for	bool()
nat list	for	(list_)(nat)
bool ⇒ nat	for	(_⇒_)(bo⊚l, nat

Types (3):

• We assume constant environment which assigns each constant symbol a type:

 $\Sigma :: C \mapsto \tau$

• We assume a variable-environment which assigns to each variable symbol a type: $\Gamma::V\mapsto\tau$

(we write
$$\Gamma = \{a \mapsto \tau_1, b \mapsto \tau_2, c \mapsto \tau_3 \dots\}$$
)

Types (4):

• A type judgement stating that a term t has type τ in environments Σ and Γ :

$$\Sigma, \Gamma \vdash t :: \tau$$

 and a set of inductive type inference rules establishing type judgements.

٠

• Type Inferences:

$$\Sigma, \Gamma \vdash c_i :: \theta \ (\Sigma \ c_i)$$

$$\Sigma, \Gamma \vdash x_i :: \Gamma \ x_i$$

$$\frac{\Sigma, \Gamma \vdash E :: \tau \Rightarrow \tau' \quad \Sigma, \Gamma \vdash E' :: \tau}{\Sigma, \Gamma \vdash E E' :: \tau'}$$
$$\frac{\Sigma, \{x_i \mapsto \tau\} \uplus \Gamma \vdash E :: \tau'}{\Sigma, \{x_i \mapsto \tau\} \uplus \Gamma \vdash E :: \tau'}$$

 $\Sigma, \Gamma \vdash \lambda x_i . E :: \tau \Rightarrow \tau'$

- Note that constant symbols where treated slightly different than variable symbols:
 - constant symbols may be instantiated (the type variables may be substituted via θ)
 - a constant symbol may therefore have different types in a term.

Typed
$$\lambda$$
-calculus

• We assume

$$\Sigma = \{0 \mapsto \text{nat}, 1 \mapsto \text{nat}, 2 \mapsto \text{nat}, 3 \mapsto \text{nat}, \\ \text{Suc} _ \mapsto \text{nat} \Rightarrow \text{nat}, _+_ \mapsto \text{nat} \Rightarrow \text{nat} \Rightarrow \text{nat}, \\ _=_ \mapsto \alpha \Rightarrow \alpha \Rightarrow \text{bool}, \text{True} \mapsto \text{bool}, \text{False} \mapsto \text{bool}\}$$

Typed λ -calculus

• Example:

does λx . x + 3 have a type, and which one ?

$\overline{\Sigma, \{x \mapsto nat\} \vdash (_+_) :: nat \Rightarrow nat \Rightarrow nat}$	$\overline{\Sigma, \{x \mapsto nat\} \vdash x :: nat}$	
$\Sigma, \{x \mapsto nat\} \vdash (-+-)(x) :: nat \Rightarrow nat$		$\overline{\Sigma, \{x \mapsto nat\} \vdash 3 :: nat}$
$\Sigma, \{x \mapsto ne$	$at\} \uplus \{\} \vdash x + 3 :: nat$	
$\Sigma, \{\} \vdash \lambda$	$x.x + 3 :: nat \Rightarrow nat$	

Revisions: Typed λ -calculus

• Examples:

Are there variable environments ρ such that the following terms are typable in Σ : (note the infix notation: we write 0 + x for "_+_" 0 x")

• a + b = (True = c)

Revisions: β -reduction

- Assume that we want to find typed solutions for ?X, ?Y, ?Z such that the following terms become equivalent modulo α -conversion and β -reduction:
 - ?Xa =?= a + ?Y
 - $(\lambda c. g c) = ?= (\lambda x. ?Y x)$
 - ($\lambda c. ?X c$) a =?= ?Y
 - $\lambda a. (\lambda c. X c) a =?= (\lambda x. ?Y)$
- Note: Variables like ?X, ?Y, ?Z are called schematic variables; they play a major role in Isabelles Rule-Instantiation Mechanism
- Are solutions for schematic variables always unique ?

The typed λ -calculus

Theoretical Properties (without proof)

the congruence

$t \leftrightarrow_{\alpha\beta\eta} t'$

is decidable (reduce to β -normalform, expand to η -longform, rename vars via α in some canonical order)

 Systems like Coq, Isabelle, HOL4 can use (some form of) typed λ-calculi as universal termrepresentation with binding operators such as ∀, ∃, sums, integrals, ...

The typed λ -calculus

Theoretical Properties (without proof)

The type inference problem is decidable, i.e. for

 $\Sigma, ? \vdash t :: ??$

there is an algorithm that finds solutions for ? and ?? if existing.

- the difference between "Pure" and "Applied" is relevant for typing
- $\lambda f.(\lambda x.f(x x))(\lambda x.f(x x))$ is untypable
- Beta-reduction is terminating, i.e. there is always an irreducible t' for any t such that:

$$t \rightarrow_{\beta}^{*} t'$$

B. Wolff - M1-PIA

Application: Encoding a Simple Logic in typed λ-Terms

Pure in Typed $\lambda\text{-calculus}$

• We assume for a minimal logic:

$$\Sigma_{\text{Pure}} = \{ _ \Longrightarrow _ \mapsto \text{prop} \Rightarrow \text{prop} \Rightarrow \text{prop}, \}$$

$$\equiv$$
 $\mapsto \alpha \Rightarrow \alpha \Rightarrow \text{prop},$

$$\land_._ \mapsto (\alpha \Rightarrow prop) \Rightarrow prop\}$$

where we will equivalently write $\Lambda x. P$ for $\Lambda_{-}(\lambda x. P)$. (Quantifier notation)

HOL in Typed $\lambda\text{-calculus}$

• We assume for Higher-Order Logic:

 $\Sigma_{\text{HOL}} = \Sigma_{\text{Pure}}$

{ Trueprop \mapsto bool \Rightarrow prop,

True \mapsto bool, False \mapsto bool, $_\wedge_$ \mapsto bool \Rightarrow bool \Rightarrow bool, $_v_$ \mapsto bool \Rightarrow bool \Rightarrow bool, $_\longrightarrow_$ \mapsto bool \Rightarrow bool, $\neg_$ \mapsto bool \Rightarrow bool, $=_$ $\mapsto \alpha \Rightarrow \alpha \Rightarrow$ bool, $\forall_._$ $\mapsto (\alpha \Rightarrow bool) \Rightarrow$ bool, $\exists_._$ $\mapsto (\alpha \Rightarrow bool) \Rightarrow$ bool,

Outlook: representing Rules

An Inference System for the equality operator (or "HO Equational Logic") looks like this:

$$\frac{(s=s)prop}{(s=s)prop} \qquad \frac{(s=t)prop}{(t=s)prop} \qquad \frac{(r=s)prop}{(r=t)prop}$$

$$\frac{(s(x) = t(x))prop}{(s = t)prop} where x is fresh \qquad \frac{(s = t)prop}{(P(t))prop}$$

(Prop is Trueprop and the bar corresponds to $A \implies B$).

Natural Deduction

With a nicer pretty-printing this looks like this:

$$\frac{x = x}{x = x} \qquad \frac{s = t}{t = s} \qquad \frac{r = s \quad s = t}{r = t}$$

$$\frac{\bigwedge x. \ s \ x = t \ x}{s = t} \qquad \frac{s = t \quad P \ s}{P \ t}$$

(equality on functions as above ("extensional equality") is an HO principle, and it is a principle in a "classical" HOL).

Conclusion

- Typed λ -calculus is a rich term language for the representation of logics, logical rules, and logical derivations (proofs)
- On the basis of typed λ -calculus,
- Higher-order logic (HOL) is fairly easy to represent
- The differences to first-order logic (FOL) are actually tiny.